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Abstract — Existing methods for simulating particle collision       
experiments like those at the Large Hadron Collider (LHC) are          
time-consuming, slow, and expensive. In these experiments, two        
high-energy beams of particles are collided with one another, and          
the resulting “particle shower” is recorded by calorimeter        
sensors that surround the beams. We explore using a conditional          
Generative Adversarial Network (cGAN) to simulate the sensor        
data that is recorded from these experiments. Taking particle         
type (photon or pion) and momentum as inputs, it generates a           
two-dimensional image representing a slice from the       
three-dimensional array of LCD electromagnetic calorimeter      
(ECAL) sensors.  

Keywords—high energy physics; particle physics; conditional      
generative adversarial networks. 

I. BACKGROUND 

The Large Hadron Collider (LHC) is the largest particle         
collider in the world, designed to shoot two high-energy         
beams of subatomic particles, and measure the resulting        
particle showers when they collide. The particle showers that         
are produced by these collision experiments are detected and         
measured with a variety of sensors. Sensors in the LHC that           
are designed to measure the energy levels of particles are          
called “calorimeters”. The data provided to us by Bendavid et          
al. contains the calorimeter readings of nearly one million         
collision events.  

Existing methods to simulate calorimeter sensor data rely        
on statistical models derived from physical theory. As a         
consequence, building a model for a novel experiment requires         
simulating underlying physics, which is often computationally       
expensive. Neural network models, in contrast, require no        
scientific expertise to construct, and are computationally       
inexpensive to run once they have been trained. If a neural           
network model could be constructed to generate realistic        
calorimeter data, it would significantly speed up existing        
computational pipelines for high-energy physics experiments. 

 

II. DATA 

The LHC collision event data set was provided to us as           
part of the CERN Open Data Initiative (Bendavid, 2016),         
courtesy of Maurizio Pierini and Jean-Roch Vilmant. It        
contains calorimeter readings for nearly one million       
single-particle collision events, divided nearly evenly between       
two particle types: photons and neutral pions. Each collision         
event has its particle shower recorded by two different kinds          
of calorimeter sensors: an LCD electromagnetic calorimeter       
(ECAL) and a hadron calorimeter (HCAL). Both types of         
calorimeter record energy values in a three-dimensional grid.        
The particle beam travels through the calorimeters, along their         
z-axis. The ECAL consists of a 25-by-25-by-20 array of         
sensors, while the HCAL calorimeter is a 4-by-4-by-60 array.         
Each sensor records a positive number representing the energy         
detected at that point in space (See Fig. 1).  

 
Fig. 1 (Bendavid, 2016). The particle beams travel along a          

cylindrical tube on the z-axis of the calorimeters, which are          
placed at their collision point. 

 

The data is split across 100 different files in Hierarchical          
Data Format (HDF5), each containing about 10,000 different        
collision events, split roughly equally between each particle        
type. Each event has a three parts: the event’s parameters, its           
ECAL readings, and its HCAL readings. The event parameters         
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are given as a list of numbers containing the type of particle            
beam used, the initial energy of the beam, and its initial           
momentum vector. The ECAL and HCAL sensor readings are         
each given as a 25-by-25-by-20 tensor of floating point         
numbers. An example sensor reading is visualized in Fig. 2. 

 

 
Figure 2. A 3D picture of an ECAL calorimeter reading.          

Darker points have higher energy readings than lighter ones. 

 

We made a few small modifications to the data that          
facilitated its use with our model. First, we noticed that values           
20 through 24 are always zero in the first two dimensions of            
the ECAL data. We do not know if this was expected or an             
error in the data (see Fig. 3). We discarded this portion of the             
data since it had no information. Additionally, since the beam          
enters the calorimeters exactly along the z-axis of the         
calorimeters, the momentum vector has zero values in its         
y-axis and z-axis entries, and its x-axis entry is equal to the            
initial total energy of the beam. The momentum vector is          
therefore redundant with the initial energy value. As a         
consequence, the particle type and the initial energy of the          
beam were the only two values we used to parametrize each           
event. Finally, we used 80 percent of the data, roughly 80,000           
events, for training the model. We used the remaining 20          
percent for its evaluation. 

 
Figure 3. An example 2D slice of ECAL calorimeter. Note          

that the data points from entries 20 through 24 are empty.  

 

III. OUR MODEL 

Our given task was to devise a generative model to          
simulate these three-dimensional calorimeter readouts.     
Essentially, we needed to generate three-dimensional images.       
We knew that recent research had seen great success using          
generative adversarial networks (GANs) for image generation       
(Goodfellow et. al, 2014). A GAN contains two neural         
network models within it that are trained in unison on the           
same data set: a “generator” network and a “discriminator”         
network.  

The generator network takes a random vector as input and          
attempts to create an output image that appears as though it           
came from the training data set. The discriminator takes         
real-world- and generated images and tries to determine which         
ones are which. The training process alternates between        
training the generator and the discriminator. The generator’s        
loss is one minus discriminator loss. They are trained against          
each other - hence the “adversarial” nature of the networks. If           
trained properly, the result is a discriminator that is adept at           
distinguishing real from fake images; and more importantly, a         
generator that can create realistic images, or in this case,          
calorimeter readout simulations. Figure 4 gives the schematic        
of the process. 



 
Figure 4: Schematic of a Generative Adversarial Network 

(McGuinness, 2016) 

The conditional GAN (cGAN) (Mirza, Osindero, 2014)       
takes this idea a step further by allowing users to specify           
different types of images. For example, in the seminal paper,          
this meant the network could generate an MNIST digit         
specified by the conditioning parameter rather than simply        
producing one of the ten possible digits at random. The cGAN           
achieves this by introducing a second input vector specifying         
the additional parameter to both the generator and        
discriminator. In the MNIST case, this vector was a single          
scalar indicating the digit the generator should create, and was          
used to select an example of that digit from the training data            
for the discriminator to compare against. 

Our approach was to use a cGAN to generate calorimeter          
images using momentum and particle type as the conditional         
inputs. Once trained, it would allow users to specify either          
pion or photon, and a particular momentum value for that          
particle, and generate a simulated calorimeter sample. To        
simplify the initial problem, we took a single middle slice of           
the calorimeter readouts to work with 2D data, rather than the           
entire 3D image.  

 

IV. EVALUATION METHOD 

There is no agreed-upon general-purpose metric for       
evaluating the intrinsic quality of samples from a generative         
model. On a high-level, the generated samples should        
resemble examples from the real data. A common method is to           
measure the probability distribution of a summary statistic of         
the real data, and measure how well the corresponding         
distribution from generated samples matches it. 

One simple metric to evaluate model performance is the         
total amount of energy present in the calorimeter data relative          
to the input data. The sum of the energy measured by the            
calorimeter should not vary significantly given a type of         
particle beam and the magnitude of the input energy. If the           
total energy in a generated sample is significantly different         
from that of a real calorimeter measurement with the same          

input parameters, then it is unlikely the generated sample         
came from a similar distribution to the real one. 

We formalize this idea by taking all the ECAL readings in           
the validation data set for a single particle type, and summing           
up the ECAL tensor for each one. We then divide each of            
these total energy values by each event’s corresponding input         
energy to find the ratio of output energy to input energy for            
each event. We then take all the input energy values from this            
dataset, and use them as input to our GAN model to generate a             
simulated ECAL reading for each one. As a qualitative         
comparison, we created a scatter plot of the two datasets to           
visually compare the two distributions. See figure 5, below,         
for an example. These gave us a simple way to determine if            
the model’s samples were similar to those of the real dataset. 

 
Figure 5: Scatterplot of output vs. input energy.  The 

purpose of this plot was to check that both GAN and real data 
had similar output energy for a given input.  

 

For a quantitative comparison, we create two histograms of         
these values, one for the total energy ratios of the real data,            
and another for the generated data. If the GAN model is           
working well, the two histograms should be very similar. We          
measure their similarity by finding the difference between        
their respective means and standard deviations. We will        
present a few examples of these histograms later on         
(Appendix, Fig. 6 and Fig. 7), and our experiments will          
present the difference between the mean and standard        
deviation of the different models we tried. 

V. EXPERIMENTS 

We conducted numerous experiments, focusing primarily      
on exploring different model architectures and training       
methods. We built our models using Tensorflow, and trained         
them on NYU’s GPU-enabled High-Performance Computing      
clusters.  



A. Model Architecture 

We used an architecture borrowed from Mehdi Mirza’s        
code (with permission) as a starting point. It was used for           
generating MNIST digits in the seminal paper on conditional         
GANs. From the initial MNIST template, we tuned        
parameters by performing a sort of grid search, varying some          
elements while keeping others constant. See appendix table 1         
for list of parameters we tuned (best result for each in bold).            
In addition to recording loss, the models also record         
discriminator classification accuracy. During training, the      
following items get recorded periodically (typically every       
10,000 training steps): 

● The latest model 
● Discriminator and generator loss 
● Discriminator accuracy on real vs gan data 
● Number of training steps completed 
● Samples and plots of output for visual inspection 
● Classifier results 

B. Training changes 
1) Asymmetric Update Steps 

Initial experiments showed that the generator never had a         
chance to “lift-off”. The discriminator error would decrease        
monotonically towards perfect accuracy without any      
oscillation due to improved samples coming from the        
generator. This degenerate equilibrium was avoided by       
updating the generator parameters k-times for every       
discriminator update, as suggested in Goodfellow et al.        
Hyperparameter search led to setting k equal to four. 

2) Minibatch Discrimination 

A repeating problem we encountered was that the        
generator would fixate on a small subset of pixels and vary           
those slightly, fooling the discriminator but producing very        
homogeneous results. Fortunately we found a blog post which         
said this 'collapsing' of the GAN is a common problem, and           
offered a solution from (Salimans et al., 2016.). The solution          
was to add a layer to the discriminator that tells it how much             
variability there is in a given minibatch. This prevents the          
generator from getting away with producing the same image         
every time, because the discriminator can see the unrealistic         
lack of variability across the generated data within a         
minibatch. This methodology was named “minibatch      
discrimination”. To achieve better convergence, this required       
a smaller batch size (16 rather than 512).  

Before minibatch discrimination, the distribution of      
generated energy ratios did not match the real data (see          
Appendix Fig. 6). 

3) Feature Matching 

Minibatch discrimination resulted in better samples, 
but the distribution of the energy input-output ratio produced 
by the generator still varied greatly from the real-data 

distribution.  Rather than explicitly optimizing for this ratio by 
including it in the generator loss function, we include it in the 
discriminator model through a method called “feature 
matching” (Salimans et al., 2016). This approach suggests that 
you can encourage the generator to produce the feature you are 
interested in by explicitly giving that feature to the 
discriminator. In this context, we want the generator to 
produce samples that match the the total energy ratio statistic 
of a corresponding real sample. To encourage this through 
feature matching, we simply calculate this value and append it 
to the last (pre-softmax) layer of the discriminator.  
 

4) Data Averaging 

The calorimeter data is extremely sparse and heavily        
skewed, with the largest 15 values in the 2D slice (out of 400)             
accounting for 42% of the total energy in a typical experiment.           
This made the generators task particularly challenging and led         
us to average the data into evenly sized (particle-type, input          
momentum) bins. Each average observations was generated by        
collapsing 10 experiments into a single average-experiment.       
This dramatically improved the quality of the generated        
samples (visually) and significantly improved validation      
results 

VI. CONCLUSIONS 

The best model used 4 fully-connected layers of 1200 
nodes each in the generator. It used 2 fully-connected layers of 
1200 nodes each in the discriminator; with dropout, minibatch 
discriminator, and feature matching in the discriminator as 
well.  It used a learning rate of 0.0002 with the Adam 
optimizer and batch size of 8.  

The best model’s output looked like real samples, but with 
realistic variation.  Encouragingly, pixel intensity (measured 
energy) increases for particles with higher momentum.  See 
Appendix, Fig. 7 for the energy ratio distributions generated 
by the best model, and Appendix, Fig. 8 for the best model’s 
generated samples.  

 

VII. FUTURE WORK 

We learned a great deal about how what kinds of model 
parameters and training methods are useful for simulating 
ECAL readings, but there is much more work left to do until 
the GAN can generate useful simulations of ECAL readings. 

A. Training Convergence 
The biggest problem we left unsolved was that none of our 

models ever converged to a stable output. The training loss for 
both the generator and the discriminator never reliably leveled 
off to a single value after several hours of training. As a result, 
there was no clear way to determine when training was 
“complete”.  



Lack of convergence is a common problem training GANs, 
and has no theoretical solution (Salimans et al., 2016). When 
attempting to generate realistic images, convergence is not 
strictly needed, since the output can be evaluated qualitatively. 
Doing qualitative analysis of generated calorimeter readings is 
not as clear cut, so a convergence is required to be sure that a 
given model has reached its potential. There are a number of 
different techniques that have been proposed to deal with this 
that we have not yet tried, such as “historical averaging”, 
“one-sided label smoothing”, and “virtual batch 
normalization” (Salimans et al., 2016). 

B. Three-Dimensional ECAL Simulation 
Our model only attempted to generate simulations of a two 

dimensional slice of ECAL readings. Although this was a 
good starting point, our model will not be useful to other 
researchers until it can generate the full three-dimensional 
simulation of an ECAL reading. 

We believe that it is likely that a three-dimensional model 
can be created through a few small architectural modifications 
to our two-dimensional model. We believe this because most 
of the improvements (and pitfalls) we discovered in 
constructing the two-dimensional model came from modifying 
how the model was trained, and how the data was represented. 
The details of the model architecture had relatively little effect 
on the quality of its output, leading us to think that may be 
true of GANs generally. 

C. Additional Evaluation Methods 
There are several ways one could evaluate the quality of 

the generated calorimeter readings, in addition to our energy 
ratio histograms. We attempted another technique as well: 
building a classifier that could identify the type of particle 
(photon or neutral pion) associated with a given example of 
real calorimeter data. If the classifier is able to reliably 
identify the particle type associated with real data, and if our 
GAN is working well, then the classifier should be able to 
reliably identify the particle types used as input to the GAN’s 
simulations. 

Towards this end, we trained several different types of 
models: logistic regression, decision tree, support vector 
machine, random forest, and multilayer perceptron, but none 
of them were able to reliably classifier the calorimeter 
readings by their particle type. It is possible that this may not 
have worked because we limited the classifier to a 
two-dimensional slice of the calorimeter data, because that is 
what our GAN was designed to generate. There are reasons 
from physics to believe the full three-dimensional tensor of 
calorimeter data could have been more easily classified. If, in 
the future, we are able to create a generative model that can 
simulate three-dimensional calorimeter readings, we will retry 
this approach to evaluate its creations. 
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APPENDIX 

 
 

Parameter Values 
Number of layers in networks 2, 4 

Nodes per layer in generator network 600, 1200 

Number of generator training steps per discriminator training step 1,3,4 

Activation function Sigmoid, ReLU 

Learning Rate 0.1, 0.01, 0.001, 0.0002 

Batch Size 8, 16, 64, 256, 512 

Table 1. Tuned Parameters (Best Value in Bold) 
 
 

 
Figure 6: Ratio of measured energy to input energy of real and generated events.  In this early experiment, the distribution of 

generated ratios did not match the real data’s distribution. 

 

 



 
Fig. 7: After minibatch discrimination, feature matching and data averaging, distributions matched much more closely 

 
Fig. 8: Real and generated samples from our best model.  Appropriately, pixel intensity increased with increasing momentum, but 

there was still variability in generated images.  


