
Conditional Generative Adversarial Networks for
Particle Physics

Capstone 2016

Charles Guthrie (​cdg356@nyu.edu​)

Israel Malkin (​im965@nyu.edu​)
Alex Pine (​akp258@nyu.edu​)

Advisor: Kyle Cranmer (​kyle.cranmer@nyu.edu​)

Abstract​ — Existing methods for simulating particle collision
experiments like those at the Large Hadron Collider (LHC) are
time-consuming, slow, and expensive. In these experiments, two
high-energy beams of particles are collided with one another, and
the resulting “particle shower” is recorded by calorimeter
sensors that surround the beams. We explore using a conditional
Generative Adversarial Network (cGAN) to simulate the sensor
data that is recorded from these experiments. Taking particle
type (photon or pion) and momentum as inputs, it generates a
two-dimensional image representing a slice from the
three-dimensional array of LCD electromagnetic calorimeter
(ECAL) sensors.

Keywords—high energy physics; particle physics; conditional
generative adversarial networks.

I. BACKGROUND

The Large Hadron Collider (LHC) is the largest particle
collider in the world, designed to shoot two high-energy
beams of subatomic particles, and measure the resulting
particle showers when they collide. The particle showers that
are produced by these collision experiments are detected and
measured with a variety of sensors. Sensors in the LHC that
are designed to measure the energy levels of particles are
called “calorimeters”. The data provided to us by Bendavid et
al. contains the calorimeter readings of nearly one million
collision events.

Existing methods to simulate calorimeter sensor data rely
on statistical models derived from physical theory. As a
consequence, building a model for a novel experiment requires
simulating underlying physics, which is often computationally
expensive. Neural network models, in contrast, require no
scientific expertise to construct, and are computationally
inexpensive to run once they have been trained. If a neural
network model could be constructed to generate realistic
calorimeter data, it would significantly speed up existing
computational pipelines for high-energy physics experiments.

II. DATA

The LHC collision event data set was provided to us as
part of the CERN Open Data Initiative (Bendavid, 2016),
courtesy of Maurizio Pierini and Jean-Roch Vilmant. It
contains calorimeter readings for nearly one million
single-particle collision events, divided nearly evenly between
two particle types: photons and neutral pions. Each collision
event has its particle shower recorded by two different kinds
of calorimeter sensors: an LCD electromagnetic calorimeter
(ECAL) and a hadron calorimeter (HCAL). Both types of
calorimeter record energy values in a three-dimensional grid.
The particle beam travels through the calorimeters, along their
z-axis. The ECAL consists of a 25-by-25-by-20 array of
sensors, while the HCAL calorimeter is a 4-by-4-by-60 array.
Each sensor records a positive number representing the energy
detected at that point in space (See Fig. 1).

Fig. 1 (Bendavid, 2016). The particle beams travel along a

cylindrical tube on the z-axis of the calorimeters, which are
placed at their collision point.

The data is split across 100 different files in Hierarchical
Data Format (HDF5), each containing about 10,000 different
collision events, split roughly equally between each particle
type. Each event has a three parts: the event’s parameters, its
ECAL readings, and its HCAL readings. The event parameters

mailto:cdg356@nyu.edu
mailto:im965@nyu.edu
mailto:akp258@nyu.edu
mailto:kyle.cranmer@nyu.edu

are given as a list of numbers containing the type of particle
beam used, the initial energy of the beam, and its initial
momentum vector. The ECAL and HCAL sensor readings are
each given as a 25-by-25-by-20 tensor of floating point
numbers. An example sensor reading is visualized in Fig. 2.

Figure 2. A 3D picture of an ECAL calorimeter reading.

Darker points have higher energy readings than lighter ones.

We made a few small modifications to the data that
facilitated its use with our model. First, we noticed that values
20 through 24 are always zero in the first two dimensions of
the ECAL data. We do not know if this was expected or an
error in the data (see Fig. 3). We discarded this portion of the
data since it had no information. Additionally, since the beam
enters the calorimeters exactly along the z-axis of the
calorimeters, the momentum vector has zero values in its
y-axis and z-axis entries, and its x-axis entry is equal to the
initial total energy of the beam. The momentum vector is
therefore redundant with the initial energy value. As a
consequence, the particle type and the initial energy of the
beam were the only two values we used to parametrize each
event. Finally, we used 80 percent of the data, roughly 80,000
events, for training the model. We used the remaining 20
percent for its evaluation.

Figure 3. An example 2D slice of ECAL calorimeter. Note

that the data points from entries 20 through 24 are empty.

III. OUR MODEL

Our given task was to devise a generative model to
simulate these three-dimensional calorimeter readouts.
Essentially, we needed to generate three-dimensional images.
We knew that recent research had seen great success using
generative adversarial networks (GANs) for image generation
(Goodfellow et. al, 2014). A GAN contains two neural
network models within it that are trained in unison on the
same data set: a “generator” network and a “discriminator”
network.

The generator network takes a random vector as input and
attempts to create an output image that appears as though it
came from the training data set. The discriminator takes
real-world- and generated images and tries to determine which
ones are which. The training process alternates between
training the generator and the discriminator. The generator’s
loss is one minus discriminator loss. They are trained against
each other - hence the “adversarial” nature of the networks. If
trained properly, the result is a discriminator that is adept at
distinguishing real from fake images; and more importantly, a
generator that can create realistic images, or in this case,
calorimeter readout simulations. Figure 4 gives the schematic
of the process.

Figure 4: Schematic of a Generative Adversarial Network

(McGuinness, 2016)

The conditional GAN (cGAN) (Mirza, Osindero, 2014)
takes this idea a step further by allowing users to specify
different types of images. For example, in the seminal paper,
this meant the network could generate an MNIST digit
specified by the conditioning parameter rather than simply
producing one of the ten possible digits at random. The cGAN
achieves this by introducing a second input vector specifying
the additional parameter to both the generator and
discriminator. In the MNIST case, this vector was a single
scalar indicating the digit the generator should create, and was
used to select an example of that digit from the training data
for the discriminator to compare against.

Our approach was to use a cGAN to generate calorimeter
images using momentum and particle type as the conditional
inputs. Once trained, it would allow users to specify either
pion or photon, and a particular momentum value for that
particle, and generate a simulated calorimeter sample. To
simplify the initial problem, we took a single middle slice of
the calorimeter readouts to work with 2D data, rather than the
entire 3D image.

IV. EVALUATION METHOD

There is no agreed-upon general-purpose metric for
evaluating the intrinsic quality of samples from a generative
model. On a high-level, the generated samples should
resemble examples from the real data. A common method is to
measure the probability distribution of a summary statistic of
the real data, and measure how well the corresponding
distribution from generated samples matches it.

One simple metric to evaluate model performance is the
total amount of energy present in the calorimeter data relative
to the input data. The sum of the energy measured by the
calorimeter should not vary significantly given a type of
particle beam and the magnitude of the input energy. If the
total energy in a generated sample is significantly different
from that of a real calorimeter measurement with the same

input parameters, then it is unlikely the generated sample
came from a similar distribution to the real one.

We formalize this idea by taking all the ECAL readings in
the validation data set for a single particle type, and summing
up the ECAL tensor for each one. We then divide each of
these total energy values by each event’s corresponding input
energy to find the ratio of output energy to input energy for
each event. We then take all the input energy values from this
dataset, and use them as input to our GAN model to generate a
simulated ECAL reading for each one. As a qualitative
comparison, we created a scatter plot of the two datasets to
visually compare the two distributions. See figure 5, below,
for an example. These gave us a simple way to determine if
the model’s samples were similar to those of the real dataset.

Figure 5: Scatterplot of output vs. input energy. The

purpose of this plot was to check that both GAN and real data
had similar output energy for a given input.

For a quantitative comparison, we create two histograms of
these values, one for the total energy ratios of the real data,
and another for the generated data. If the GAN model is
working well, the two histograms should be very similar. We
measure their similarity by finding the difference between
their respective means and standard deviations. We will
present a few examples of these histograms later on
(Appendix, Fig. 6 and Fig. 7), and our experiments will
present the difference between the mean and standard
deviation of the different models we tried.

V. EXPERIMENTS

We conducted numerous experiments, focusing primarily
on exploring different model architectures and training
methods. We built our models using Tensorflow, and trained
them on NYU’s GPU-enabled High-Performance Computing
clusters.

A. Model Architecture

We used an architecture borrowed from Mehdi Mirza’s
code (with permission) as a starting point. It was used for
generating MNIST digits in the seminal paper on conditional
GANs. From the initial MNIST template, we tuned
parameters by performing a sort of grid search, varying some
elements while keeping others constant. See appendix table 1
for list of parameters we tuned (best result for each in bold).
In addition to recording loss, the models also record
discriminator classification accuracy. During training, the
following items get recorded periodically (typically every
10,000 training steps):

● The latest model
● Discriminator and generator loss
● Discriminator accuracy on real vs gan data
● Number of training steps completed
● Samples and plots of output for visual inspection
● Classifier results

B. Training changes
1) Asymmetric Update Steps

Initial experiments showed that the generator never had a
chance to “lift-off”. The discriminator error would decrease
monotonically towards perfect accuracy without any
oscillation due to improved samples coming from the
generator. This degenerate equilibrium was avoided by
updating the generator parameters k-times for every
discriminator update, as suggested in Goodfellow et al.
Hyperparameter search led to setting k equal to four.

2) Minibatch Discrimination

A repeating problem we encountered was that the
generator would fixate on a small subset of pixels and vary
those slightly, fooling the discriminator but producing very
homogeneous results. Fortunately we found a blog post which
said this 'collapsing' of the GAN is a common problem, and
offered a solution from (Salimans et al., 2016.). The solution
was to add a layer to the discriminator that tells it how much
variability there is in a given minibatch. This prevents the
generator from getting away with producing the same image
every time, because the discriminator can see the unrealistic
lack of variability across the generated data within a
minibatch. This methodology was named “minibatch
discrimination”. To achieve better convergence, this required
a smaller batch size (16 rather than 512).

Before minibatch discrimination, the distribution of
generated energy ratios did not match the real data (see
Appendix Fig. 6).

3) Feature Matching

Minibatch discrimination resulted in better samples,
but the distribution of the energy input-output ratio produced
by the generator still varied greatly from the real-data

distribution. Rather than explicitly optimizing for this ratio by
including it in the generator loss function, we include it in the
discriminator model through a method called “feature
matching” (Salimans et al., 2016). This approach suggests that
you can encourage the generator to produce the feature you are
interested in by explicitly giving that feature to the
discriminator. In this context, we want the generator to
produce samples that match the the total energy ratio statistic
of a corresponding real sample. To encourage this through
feature matching, we simply calculate this value and append it
to the last (pre-softmax) layer of the discriminator.

4) Data Averaging

The calorimeter data is extremely sparse and heavily
skewed, with the largest 15 values in the 2D slice (out of 400)
accounting for 42% of the total energy in a typical experiment.
This made the generators task particularly challenging and led
us to average the data into evenly sized (particle-type, input
momentum) bins. Each average observations was generated by
collapsing 10 experiments into a single average-experiment.
This dramatically improved the quality of the generated
samples (visually) and significantly improved validation
results

VI. CONCLUSIONS

The best model used 4 fully-connected layers of 1200
nodes each in the generator. It used 2 fully-connected layers of
1200 nodes each in the discriminator; with dropout, minibatch
discriminator, and feature matching in the discriminator as
well. It used a learning rate of 0.0002 with the Adam
optimizer and batch size of 8.

The best model’s output looked like real samples, but with
realistic variation. Encouragingly, pixel intensity (measured
energy) increases for particles with higher momentum. See
Appendix, Fig. 7 for the energy ratio distributions generated
by the best model, and Appendix, Fig. 8 for the best model’s
generated samples.

VII. FUTURE WORK

We learned a great deal about how what kinds of model
parameters and training methods are useful for simulating
ECAL readings, but there is much more work left to do until
the GAN can generate useful simulations of ECAL readings.

A. Training Convergence
The biggest problem we left unsolved was that none of our

models ever converged to a stable output. The training loss for
both the generator and the discriminator never reliably leveled
off to a single value after several hours of training. As a result,
there was no clear way to determine when training was
“complete”.

Lack of convergence is a common problem training GANs,
and has no theoretical solution (Salimans et al., 2016). When
attempting to generate realistic images, convergence is not
strictly needed, since the output can be evaluated qualitatively.
Doing qualitative analysis of generated calorimeter readings is
not as clear cut, so a convergence is required to be sure that a
given model has reached its potential. There are a number of
different techniques that have been proposed to deal with this
that we have not yet tried, such as “historical averaging”,
“one-sided label smoothing”, and “virtual batch
normalization” (Salimans et al., 2016).

B. Three-Dimensional ECAL Simulation
Our model only attempted to generate simulations of a two

dimensional slice of ECAL readings. Although this was a
good starting point, our model will not be useful to other
researchers until it can generate the full three-dimensional
simulation of an ECAL reading.

We believe that it is likely that a three-dimensional model
can be created through a few small architectural modifications
to our two-dimensional model. We believe this because most
of the improvements (and pitfalls) we discovered in
constructing the two-dimensional model came from modifying
how the model was trained, and how the data was represented.
The details of the model architecture had relatively little effect
on the quality of its output, leading us to think that may be
true of GANs generally.

C. Additional Evaluation Methods
There are several ways one could evaluate the quality of

the generated calorimeter readings, in addition to our energy
ratio histograms. We attempted another technique as well:
building a classifier that could identify the type of particle
(photon or neutral pion) associated with a given example of
real calorimeter data. If the classifier is able to reliably
identify the particle type associated with real data, and if our
GAN is working well, then the classifier should be able to
reliably identify the particle types used as input to the GAN’s
simulations.

Towards this end, we trained several different types of
models: logistic regression, decision tree, support vector
machine, random forest, and multilayer perceptron, but none
of them were able to reliably classifier the calorimeter
readings by their particle type. It is possible that this may not
have worked because we limited the classifier to a
two-dimensional slice of the calorimeter data, because that is
what our GAN was designed to generate. There are reasons
from physics to believe the full three-dimensional tensor of
calorimeter data could have been more easily classified. If, in
the future, we are able to create a generative model that can
simulate three-dimensional calorimeter readings, we will retry
this approach to evaluate its creations.

REFERENCES

[1] Bendavid, Josh, et al. “Imaging Calorimeter Data for Machine Learning

Applications in HEP.” 2016.
[2] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in

Neural Information Processing Systems. 2014.
[3] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial

nets." arXiv preprint arXiv:1411.1784 (2014).
[4] Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative

Image Models using a​ Laplacian Pyramid of Adversarial Networks."
Advances in neural information processing systems. 2015.

[5] Salimans, Tim, et al. "Improved techniques for training gans." Advances
in Neural Information Processing Systems. 2016.

[6] Chen, Xi, et al. "Infogan: Interpretable representation learning by
information maximizing generative adversarial nets." Advances in
Neural Information Processing Systems. 2016.

[7] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised
representation learning with deep convolutional generative adversarial
networks." arXiv preprint arXiv:1511.06434 (2015).

[8] Glover, John. "An Introduction to Generative Adversarial Networks
(with Code in TensorFlow) - AYLIEN." AYLIEN. N.p., 26 Aug. 2016.
Web. 12 Dec. 2016.

[9] McGuinness, Kevin “Generative Models and Adversarial Training”
http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-
generative -models-and-adversarial-training -upc-2016

http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016
http://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

APPENDIX

Parameter Values
Number of layers in networks 2, ​4

Nodes per layer in generator network 600, ​1200

Number of generator training steps per discriminator training step 1,3,​4

Activation function Sigmoid, ​ReLU

Learning Rate 0.1, 0.01, 0.001, ​0.0002

Batch Size 8, ​16​, 64, 256, 512

Table 1. Tuned Parameters (Best Value in Bold)

Figure 6: Ratio of measured energy to input energy of real and generated events. In this early experiment, the distribution of

generated ratios did not match the real data’s distribution.

Fig. 7: After minibatch discrimination, feature matching and data averaging, distributions matched much more closely

Fig. 8: Real and generated samples from our best model. Appropriately, pixel intensity increased with increasing momentum, but

there was still variability in generated images.

